HASHEMITE UNIVERSITY

Department of Mechanical Engineering
Second Exam
Dynamics
July $26^{\text {th }} 2007$
Name:

Problem 1:

A 6-lb collar can slide without friction on a vertical rod and is resting in equilibrium on a spring. It is pushed down, compressing the spring 6 in, and released. Knowing that the spring constant is $\mathrm{k}=15 \mathrm{lb} / \mathrm{in}$, determine
a) The maximum height h reached by the collar above its equilibrium position
b) The maximum velocity of the collar

Problem 2:

A 600-g ball A is moving with a velocity \mathbf{v}_{A} when it is struck by a $1.2-\mathrm{kg}$ ball B which has a velocity \mathbf{v}_{B} of magnitude $\mathbf{v}_{\mathrm{B}}=6 \mathrm{~m} / \mathrm{s}$. Knowing that the velocity of ball B is zero after impact and that the coefficient of restitution is 0.8 , determine the velocity of ball A before and after impact.

